13 research outputs found

    Biomechanics of North Atlantic right whale bone : mandibular fracture as a fatal endpoint for blunt vessel-whale collision modeling

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2007The North Atlantic right whale, Eubalaena glacialis, one of the most critically endangered whales in the world, is subject to high anthropogenic mortality. Vessel-whale collisions and entanglement in fishing gear were indicated in 27 (67.5%) of the 40 right whales necropsied between 1970 and December 2006. Of those, at least 9 deaths (22.5%) resulted from blunt contact with a vessel. To reduce the likelihood of fatal collisions, speed restrictions are being considered for vessels traversing critical habitat, although the effects of speed on collision outcomes have not been specifically evaluated from a biomechanics perspective. The ultimate goal of a larger collaborative project is to evaluate the efficacy of speed restrictions for reducing blunt collision mortality using a multi-scale finite element model. Complete, transverse fracture of the right whale mandible, an injury seen only in right whales killed by vessels, is used as a proxy for mortality in the model. Vital for that model are the material properties and biomechanical behavior of the right whale mandible. Here, the internal structure and physical properties of right whale jawbone tissue are reported. The average apparent densities, 0.4258 g/cc ±0.0970 and 1.2370 g/cc ±0.0535 for trabecular and cortical bone respectively, indicate that the bone is of relatively low density. Average ash content for trabecular bone (64.38% ±1.1330) is comparable with values from other species, indicating that low density results from a reduction of bone mass, not mineralization. Mechanical properties of right whale bone (Young’s modulus of elasticity and Poisson’s ratio) were determined via uniaxial compression testing. These data are incorporated into the finite element model simulating different loading conditions (e.g. vessel speeds) that likely lead to mandibular failure and thereby mortality from blunt vessel collisions. Model results (e.g. risk of fracture) are used to determine the effect of speed restrictions on collision outcomes.Funding for this work was provided by the National Science Foundation (Graduate Research Fellowship Program, Campbell-Malone), the National Oceanic and Atmospheric Administration (Right Whale Grants Program, 2004, PI Campbell-Malone, Award number NA04NMF4720402), the Ocean Life Institute (PI Campbell-Malone and PI Moore), the Quebec Labrador Foundation (PI Campbell-Malone), WHOI SeaGrant (PI Campbell-Malone), and an MIT (Presidential Fellowship, Campbell-Malone)

    Mandibular fracture as a fatal endpoint for blunt vessel-whale collision modeling

    Get PDF
    Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2007.Includes bibliographical references.The North Atlantic right whale, Eubalaena glacialis, one of the most critically endangered whales in the world, is subject to high anthropogenic mortality. Vessel-whale collisions and entanglement in fishing gear were indicated in 27 (67.5%) of the 40 right whales necropsied between 1970 and December 2006. Of those, at least 9 deaths (22.5%) resulted from blunt contact with a vessel. To reduce the likelihood of fatal collisions, speed restrictions are being considered for vessels traversing critical habitat, although the effects of speed on collision outcomes have not been specifically evaluated from a biomechanics perspective. The ultimate goal of a larger collaborative project is to evaluate the efficacy of speed restrictions for reducing blunt collision mortality using a multi-scale finite element model. Complete, transverse fracture of the right whale mandible, an injury seen only in right whales killed by vessels, is used as a proxy for mortality in the model. Vital for that model are the material properties and biomechanical behavior of the right whale mandible. Here, the internal structure and physical properties of right whale jawbone tissue are reported. The average apparent densities, 0.4258 g/cc ±0.0970 and 1.2370 g/cc ±0.0535 for trabecular and cortical bone respectively, indicate that the bone is of relatively low density. Average ash content for trabecular bone (64.38% ±1.1330) is comparable with values from other species, indicating that low density results from a reduction of bone mass, not mineralization. Mechanical properties of right whale bone (Young's modulus of elasticity and Poisson's ratio) were determined via uniaxial compression testing.(cont.) These data are incorporated into the finite element model simulating different loading conditions (e.g. vessel speeds) that likely lead to mandibular failure and thereby mortality from blunt vessel collisions. Model results (e.g. risk of fracture) are used to determine the effect of speed restrictions on collision outcomes.by Regina Campbell-Malone.Ph.D

    Report of large whale restraint workshop

    Get PDF
    Location: Carriage House, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Date: February 7th & 8th 2006A number of large cetacean species are seriously injured and killed by entanglement in fishing gear used in the waters off the eastern United States and Canada. Entanglement most frequently involves rope or lines wrapped around the head, the flippers, body, in the mouth, around the tail flukes or any combination of the aforementioned body parts. Consequences of entanglement are particularly grave for North Atlantic right whales, which currently number about 300 whales and are declining due, in part, to this entanglement-related mortality. Right whales are frequently intractable and are very difficult and potentially unsafe to work with while attempting to disentangle the animal. Modifications and technological advances are needed to control, restrain and overall increase the success rate at which right whales are able to be cut free from entangling gear.National Marine Fisheries Servic

    Mechanics of the right whale mandible : full scale testing and finite element analysis

    Get PDF
    Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 374 (2009): 93-103, doi:10.1016/j.jembe.2009.03.012.In an effort to better understand the mechanics of ship-whale collision and to reduce the associated mortality of the critically endangered North Atlantic right whale, a comprehensive biomechanical study has been conducted by the Woods Hole Oceanographic Institution and the University of New Hampshire. The goal of the study is to develop a numerical modeling tool to predict the forces and stresses during impact and thereby the resulting mortality risk to whales from ship strikes. Based on post-mortem examinations, jaw fracture was chosen as a fatal endpoint for the whales hit by a vessel. In this paper we investigate the overall mechanical behavior of a right whale mandible under transverse loading and develop a finite element analysis model of the bone. The equivalent elastic modulus of the cortical component of right whale mandible is found by comparing full-scale bending tests with the results of numerical modeling. The finite element model of the mandible can be used in conjunction with a vessel-whale collision event model to predict bone fracture for various ship strike scenarios.Funding for this work was provided by the National Science Foundation (Graduate Research Fellowship Program, Campbell-Malone), the National Oceanic and Atmospheric Administration (Right Whale Grants Program, award number NA04NMF4720402), and the Woods Hole Oceanographic Institution Ocean Life Institute

    Ontogenetic Changes in Mammalian Feeding: Insights from Electromyographic Data

    No full text
    All infant mammals make a transition from suckling milk to eating solid foods. Yet, the neuromuscular implications of the transition from a liquid-only diet to solid foods are unknown even though the transport and swallowing of liquids is different from that of solids. We used legacy electromyography (EMG) data to test hypotheses concerning the changes in motor pattern and neuromuscular control that occur during the transition from an all-liquid diet to consumption of solid food in a porcine model. EMG signals were recorded from five oropharyngeal muscles in pigs at three developmental stages (infants, juveniles, and adults) feeding on milk, on food of an intermediate consistency (porridge), and on dry chow (juveniles and adults only). We measured cycle frequency and its variation in “transport cycles” and “swallow cycles”. In the swallow cycles, a measure of variation of the EMG signal was also calculated. Variation in cycle frequency for transport and swallow cycles was lowest in adults, as predicted, suggesting that maturation of feeding mechanisms occurs as animals reach adulthood. Infants had lower variation in transport cycle frequency than did juveniles drinking milk, which may be due to the greater efficiency of the infant’s tight oral seal against the teat during suckling, compared to a juvenile drinking from a bowl where a tight seal is not possible. Within juveniles, variation in both transport and swallow cycle frequencies was directly related to food consistency, with the highest variation occurring when drinking milk and the lowest when feeding on solid food. There was no difference in the variation of the EMG activity between intact infants and juveniles swallowing milk, although when the latter swallow porridge the EMG signals were less variable than for milk. These results suggest that consistency of food is a highly significant determinant of the variation in motor pattern, particularly in newly weaned animals
    corecore